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Abstract 
In this paper, we highlight some methods for determining if a number is a prime or a composite 
number. We look at the traditional brute force method and some of the probabilistic methods like 
Miller-Rabin, Solovay-Strassen, and Baillie PSW methods and discuss what is the best strategy 
when dealing with a primality testing number exceeding the limit of a 64-bit environment. 

Introduction 
 

Prime finding methods are well known. However, the question arises when you want to expand 
the search or just to determine if a large number (exceeding 264) is a prime number or not. We 
will first deal with the various methods using only 64-bit integer arithmetic and therefore only 
dealing with prime numbers less than 264 and then expand the methods to also accommodate 
arbitrary precision numbers (larger than 264). The actual implementation will be a hybrid one 
where we use as much 64-bit arithmetic as possible and only switch to arbitrary precision when 
needed. 

There are quite a few primes less than 264-1. The number using the prime number theorem is 
around 4.15·1017. 
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The Arbitrary precision library 
If you already are familiar with the arbitrary precision library, you can skip this section. There 
are two classes. One for int_precision that handle arbitrary precision integers and one for 
float_precision that handles all floating-point arbitrary precision. Since Prime numbers are 
integers, we only need to highlight the int_precision class. 

Int_precision class 
To understand the C++ code and text we have to highlight a few features of the arbitrary 
precision library where the class name is int_precision. Instead of declaring, a variable with any 
of the build-in integer type char, short, int, long, long long, unsigned char, unsigned short, 
unsigned int, unsigned long, and unsigned long long you just replace the type name with 
int_precision. E.g. 

 

int_precision ip;  // Declare an arbitrary precision integer  

 

You can do any integer operations with int_precision that you can do for any type of integer in 
C++.  Furthermore, there are a few methods you will need to know. 

One of them is .iszero() which simply returns true or false if the int_precision variable is zero or 
not zero. Another is .even() and .odd() which return the Boolean value of the number even and 
odd status. There are other methods but I will refer you to the user manual for the arbitrary 
precision package [1]. 

Internal format for int_precision variables 
 

For the internal layout of the arbitrary precision number, we are using the STL vector library 
declared as: 

 

vector<uintmax_t> mNumber;  

 

uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit unsigned 
integer to store our integer precision number. 

 

The method .size() returns the number of internal vector entries needed to hold the number. 

 

The number is stored such that the vector mNumber[0] holds the least significant 64-bit binary 
data. The mNumber[size()-1] holds the most significant 64-bit binary data. The sign is kept 
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separately in a class field variable mSign, which means that the mNumber holds the unsigned 
binary vector data. 

 

For more details see [1]. 

 

Definition of a prime and composite number. 
A prime number is a positive integer greater than 1 that has exactly two positive divisors, 1 and 
itself. In other words, a prime number is a number that can only be divided evenly by 1 and 
itself. For example, 2, 3, 5, 7, 11, and 13 are all prime numbers.  

A composite number is a positive integer greater than 1 that is not a prime number. In other 
words, a composite number has more than two positive divisors. For example, 4, 6, 8, 9, 10, and 
12 are all composite numbers and have a least one more number than one and itself that divides 
the number. 

Example of composite numbers. 

Number Factorization 
4 1,2,4 
6 1,2,3,6 
8 1,2,4,8 
10 1,2,5,10 
121,2 1,2,3,4,6,12 

 

How many primes are there within a range of integers? The prime number theorem states that 
there are approx.: 

𝑛𝑜 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒𝑠 ~
( )

        ( 1) 

e.g. how many primes are there in the range from 1 to 100,000. The above theorem gives 8,685 
primes and the correct number is 9,592 primes. For the range of the first million the above 
approximation gives 72,382, and the correct number is 78,498 primes. 

 

Brute force computation of primes 
This is the classic way for the computation of primes. The algorithm is simply to test for a given 
number is a prime. You check if any of the preceding numbers are divisible up in the prime to 
check. If any number divides the prime in question, then it is a composite number and not a 
prime. Because there are more than two positive divisors.  This is a daunting task but we can rely 
on a very simple optimization that reduced the amount of workload to the square root of the 
number. In order word for a given test of a number p is a prime. We only need to find one 
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composite number in the range from 2 to 𝑝. To understand why we only need to check for 
composite numbers up to the square root of a given number to determine if it is prime or 
composite, consider the following: 

Suppose we have a positive integer n that we want to test for primality. If n is composite, then it 
can be written as a product of two positive integers a and b, where a and b are both greater than 
1. 

We can rewrite this as p = a · b, where a and b are factors of p. Now, at least one of a or b must 
be less than or equal to the square root of n, and the other factor must be greater than or equal to 
the square root of p. This is because if both a and b are greater than the square root of p, then 
their product (which is n) would be greater than n, which is a contradiction. 

So, if we want to test if n is prime, we only need to check if there exists a factor of p that is less 
than or equal to the square root of p. If there is no such factor, then p is prime. 

Therefore, we only need to check for composite numbers up to the square root of n, because any 
composite factor greater than the square root of n would already have been paired with a factor 
less than the square root of n in the above factorization.  

Another optimization is that a possible prime number needs to be odd otherwise we already 
know that two will divide all even numbers and can therefore not be a prime. This means we will 
only need to check all odd numbers and can reduce the workload by 50%. 

A third optimization is that all possible primes greater than 3 can be written as 6n-1 or 6n+1. 
This eliminates all even numbers and numbers that are divisible with 3. This means we would 
only need to check 5,7,11,13, 17, 19, 23, and 25,29,31, or roughly only a third of the numbers. 

We can now make our first algorithm for finding prime numbers. The name prime23 indicated 
that we eliminate all modulo of 2 and 3 numbers to test. 

Source for a simple brute force primality tester. 

// Prime number tester 
//  
bool isprime23(const uintmax_t prime) 
{ 
 uintmax_t i; 
 
 // Handle some base cases 
 if (prime <= 1) 
  return false; 
 if (prime == 2 || prime == 3)   // 2 & 3 is a prime 
  return true; 
 
 if (prime % 2 == 0 || prime % 3 == 0) // Eliminate any multiple of 2 or 3. 
  return false; 
 
 // Possible prime is of the form 6*n+1 or 6*n-1 
 for (i = 5; i * i <= prime; i += 6) 
  if (prime % i == 0 || prime % (i + 2) == 0) 
   return false; 
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 return true;     // It is a prime 
} 

This idea can be taken one step further by eliminating all numbers divisible with 2,3 & 5. This 
means we only need to check 7,11,13, 17, 19, 23, and 29 for the first 30 numbers and then the 
cycle (for the next 30 numbers) repeats itself as 37,41,43,47,49,53 and 59. This will further 
reduce the number to check by another 6%. 

The name for the function isprime235 indicates that we have eliminated all modulo of the first 10 
primes and then only test numbers that are not a modulo of 2, 3, and 5. This means more 
numbers to skip and reduce the workload by 8-9% compare to the first simpler version. 

Source for a better brute force primality tester 

// Prime number tester 
// 
bool isprime235(const uintmax_t prime) 
{ 
 uintmax_t i; 
 
 // This table handle reduce the check of the next 30 numbers to only 8  
  // instead of 10 in the isprime23 version 
 //Eliminating any multiple of 2,3 & 5.  
  // 10 first known primes 
 const uintmax_t precheck[11] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };   
 const uintmax_t primes[8] = {  1, 7, 11, 13, 17, 19, 23, 29 }; 
 uintmax_t kp; 
 
 // Handle some base cases 
 if (prime <= 1) 
  return false; 
 
 for (i = 0; i < 10; ++i) 
  if ((prime % precheck[i]) == 0) 
   return prime == precheck[i]; 
 
 // kp<sqrt(prime) becomes kp*kp<primes 
  // Loop to only test 8 numbers in a group of 30 numbers per loop 
 for (kp=30; kp * kp < prime; kp += 30)    
 { 
  for (i = 0; i < 8; ++i) 
  { 
   if (prime % (kp + primes[i]) == 0) 
    return false;   //meaning its not prime 
  } 
 } 
 
 return true;      // It is a prime 
} 

There is certainly some limitation to using the brute force method, which is slow performance 
when testing of a prime number exceeds 108-1010. When the need calls for the higher prime 
number to test then you would need to switch to the Probabilistic Primality testers to gain an 
acceptable performance. 
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Probabilistic Primality Testers 
There are several methods in this category of probabilistic primality testers. Among them are: 

 Solovay-Strassen 
 Miller-Rabin 
 Baillie PSW 
 Lucas-Lehmer 
 And others 

Se [4]. 

Comparing Primality tester methods 
The Miller-Rabin primality test is a probabilistic algorithm, meaning that it can produce false 
positives (and false negatives) with some probability. A false positive number is a composite 
number that is declared as a prime and consequently, a false negative is a prime that is declared 
as a composite number. However, the algorithm is highly efficient and can determine the 
primality of a number with high accuracy, especially when using a sufficient number of rounds 
(iterations) of the test. 

Compared to other primality tests, the Miller-Rabin test is generally considered to be faster than 
most deterministic tests for large numbers. Deterministic tests, such as the AKS test, can 
determine the primality of a number with absolute certainty, but they are generally less efficient 
than probabilistic tests like the Miller-Rabin test and therefore not used in practice. 

The Miller-Rabin primality test is a reliable and widely-used algorithm that mathematicians and 
computer scientists have studied and analyzed in depth. It's also pretty easy to implement, which 
makes it very practical for applications in cryptography and number theory. 

In practice, the Miller-Rabin test has proven to be highly effective at determining whether a 
number is prime or not. It's considered to be one of the best probabilistic primality tests available 
since it's both efficient and accurate. 

That being said, there are other primality tests out there too. For example, the Solovay-Strassen 
test is another probabilistic test that's quite similar to the Miller-Rabin test, but it uses a different 
approach based on the Euler criterion. 

The Solovay-Strassen test is generally considered to be slightly slower than the Miller-Rabin 
test, but it is also more accurate in some cases. 

Baillie-PSW test: This is a probabilistic primality test that combines elements of the Lucas-
Lehmer test with the Miller-Rabin test. The Baillie-PSW test is also considered to be one of the 
most accurate probabilistic tests available. 

Lucas-Lehmer test: This is a deterministic primality test that is specifically designed to test for 
Mersenne primes (numbers of form 2p - 1) and is most likely the fastest deterministic test 
available for large Mersenne primes. 
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Elliptic curve primality test (ECPP): This is a deterministic primality test that is based on elliptic 
curves. The ECPP test is faster than most deterministic tests, but it is also more complex to 
implement. 

Just like anything else, each of these primality tests has its own strengths and weaknesses. When 
it comes to choosing which one to use, it depends on the specific situation and what you're 
looking for in terms of speed and accuracy. 

A workable source code version in C++ for most of these methods can easily be found by 
browsing the web. E.g. [7]. These versions usually are implemented using either 32-bit or 64-bit 
arithmetic however this can be extended to arbitrary precision fairly easily. Usually, you would 
implement a hybrid solution where you test if the number to be tested is within the reach of 64-
bit arithmetic and then use the faster native version and only switch to arbitrary precision when 
needed. Now there are some issues you would need to overcome using 64-bit arithmetic and that 
is how to handle the arithmetic overflow. 

Handling arithmetic overflow 
Many of the probabilistic testers required many computations of the form: ab modulo c or a·b 
modulo c. Here we have a risk of arithmetic overflow when first computing the ab or a·b. Luckily 
there is a way to calculate the result without overflowing in the interim steps. 

The product of a·b can be handled by the following algorithm using repeated squaring. 

Avoiding overflow comes at the price of more operations. While a·b modulo requires 2 
arithmetic operations the algorithm above requires between 3-5 per loop and depending on the 
value of b up to 63 operations as a worst case on a 64-bit system.  

result = 0; 
while (b)  
   if (b & 1)  
        result = (result + a) % c 
   a = (a * 2) % c 
   b >>= 1 
return result 

Algorithm 1. (a*b)%c 

In order words care much be taken to only use the above algorithm when there is a risk of 
overflowing an arithmetic operation.  

The C++ source for imul_mod() 

// Perform (a*b)%c without causing overflow in the interim multiplication  
intmax_t imul_mod(intmax_t a, intmax_t b, const intmax_t c) 
{ 
 intmax_t result = 0; 
 for (; b > 0; b >>= 1) 
 { 
  if (b & 1) 
   result = (result + a) % c; 
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  a = (a * 2) % c; 
 } 
 return result; 
} 

This support function is only needed when using 64-bit arithmetic. When using arbitrary 
precision arithmetic there is no overflow to prevent. (As the name applied) 

The same goes for ab modulo c where a similar algorithm as the above can be used to avoid 
overflowing. 

result=1 
a = a % c 
While(b>0) 
  if (b & 1) 
  result = (result * a )%c 1) 
  a =( a * a)%c  1) 
  b>>=1 
return result 

Algorithm 2. (ab)%c  

Notice 1) the multiplication can overflow so you would need to use algorithm 1 for the 
multiplication and modulo.  
Here the operations per loop are also between 3 and 5 and the loop can go from 1 to 63. 

The C++ source for ipow_modulo() 

// Modular exponentiation function (a^b mod c) 
// Computation is done to prevent overflow by using imul_mod for critical  
// multiplication of a*b 
// If multiplication can not be done safely then we use imul_mod() 
intmax_t ipow_modulo(intmax_t a, intmax_t b, intmax_t c) 
{ 
 intmax_t res = 1;  
 intmax_t p = a; 
 
 // multiplication can be done safely then do a*b 
 // otherwise do imul_mod(a,b,c) 
 for (; b > 0; b >>= 1)  
 { 
  if (b & 0x1) 
  { 
    if(p<INT_MAX && res<INT_MAX) 
    res = (res * p) % c; 
   else 
    res = imul_mod(res, p, c); 
  } 
  if (p < INT_MAX) 
   p = (p * p) % c; 
  else 
   p = imul_mod(p,p,c);  
  if (res < 0) 
   res = res; 
 } 
 return res; 
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} 

ipow_modulo() already exists in the arbitrary precision packages [1] and can be used directly. 
Although not strictly needed in arbitrary precision it can however speed up the calculation since 
we are dealing with smaller arbitrary precision numbers in the interim steps and particularly 
using the modulo operations with a ‘smaller’ argument can increase the performance. 

Jacobi Symbol. 
Another prerequisite for using some of these testers (e.g. Baillie PSW and Solovay-Strassen) is 
the availability to compute the Jacobi symbol.  

The Jacobi symbol is a mathematical function with a lot of practical applications in number 
theory and cryptography. It's an extension of the Legendre symbol, which helps us check if a 
number is a quadratic residue modulo a prime. 

But the Jacobi symbol goes beyond that: it helps us determine if a number is a quadratic residue 
modulo any odd composite number, not just primes. This is why it's used in important 
cryptographic algorithms like RSA and ElGamal encryption. 

Beyond cryptography, the Jacobi symbol has important applications in other areas of 
mathematics, such as algebraic number theory, elliptic curves, and Galois theory. It's even useful 
in some algorithms for solving diophantine equations and factoring large integers. 

Overall, the Jacobi symbol is a powerful mathematical tool that's widely used in both theoretical 
and practical math, as well as in cryptography. 

A function to compute the Jacobi symbol can be found on 
https://rosettacode.org/wiki/Jacobi_symbol#C++ and with some modification to allow for 
negative arguments, you can use the below function. 

Source code for the Jacobi function. 

// Calculate the Jacobian symbol for a given number (a/n) 
//The result is either -1,0 or 1 
int jacobi(intmax_t a, intmax_t n) 
{  
 int result = 1; 
 int n_mod_8; 
 
 if (a < 0) 
 { // use quadratic reciprocity law 
  a = -a; 
  if (n % 4 == 3)  
   result = -result; 
 } 
 
 a %= n; 
 
 while (a != 0)  
 { 
  while (a % 2 == 0)  
  { 
   a >>= 1; 
   n_mod_8 = n % 8; 
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   if (n_mod_8 == 3 || n_mod_8 == 5) 
    result = -result; 
  } 
  swap(a, n); 
  if (a % 4 == 3 && n % 4 == 3) 
   result = -result; 
  a %= n; 
 } 
 if (n == 1) 
  return result; 
 else  
  return 0; 
} 

. 

Jacobi in arbitrary precision 
It is straightforward to alter the above Jacobi function to handle arbitrary precision.  

The arbitrary precision version of the Jacobi function. 

// Calculate the Jacobian symbol for a given number (a/n) 
// This is the arbitrary precision version 
// The result is either -1,0 or 1 
int_precision jacobi(const int_precision& a, const int_precision& n) 
{ 
 const int_precision c2(2), c4(4), c8(8); 
 int_precision aip(a), nip(n); 
 int result = 1; // can only be -1,0, or 1 
 int n_mod_8; 
 
  // Check if we can use the 64-bit version of Jacobi 
 if( a.size()==1&&n.size()==1&&((a.index(0) & (1ull << 63)) == 0) &&  
      ((n.index(0) & (1ull<<63))==0)) 
  return jacobi(intmax_t(a),intmax_t(n)); 
 
 if (aip.sign() < 0) 
 { // use quadratic reciprocity law 
  aip.change_sign(); 
  if (int(nip % c4) == 3) 
   result = -result; 
 } 
 
 aip %= nip; 
 
 while (!aip.iszero())  // While not zero 
 { 
  while (aip.even()) 
  { 
   aip >>= 1; 
   n_mod_8 = int(nip % c8); 
   if (n_mod_8 == 3 || n_mod_8 == 5) 
    result = -result; 
  } 
  swap(aip, nip); 
  if (int(aip % c4) == 3 && int(nip % c4) == 3) 
   result = -result; 
  aip %= nip; 
 } 
 if (nip == int_precision(1)) 
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  return int_precision(result); 
 else 
  return int_precision(0); 
} 

The above function is a so-called hybrid implementation that automatically detects if the 
computation can be carried out using 64-bit arithmetic which delivers a performance gain when 
the parameter a and n is within the 64-bit environment. 

Solovay-Strassen 
The Solovay-Strassen primality test is a type of probabilistic primality test that was first 
introduced by Robert M. Solovay and Volker Strassen back in 1977. This clever test is based on 
the Euler criterion, which is a special case of Euler's criterion for determining whether a number 
is a quadratic residue modulo a prime. 

Like other probabilistic primality tests, the Solovay-Strassen test uses randomness to figure out 
whether a number is likely to be prime or composite. The test works by selecting a random 
number "a" and computing the Jacobi symbol of "a" and "n", where "n" is the number being 
tested for primality. If the Jacobi symbol is equal to the modular exponentiation of "a" modulo 
"n" using Euler's criterion, then it's likely that "n" is a prime number. 

The Solovay-Strassen test is pretty easy to use and is often employed as a first-pass test before 
more sophisticated ones like the Miller-Rabin test or the Baillie-PSW test. However, it's not 
perfect and can sometimes generate false positives or false negatives. For this reason, the 
Solovay-Strassen test is usually combined with other tests to increase the reliability of the 
primality test. 

Despite its limitations, the Solovay-Strassen test has played an important role in the development 
of primality testing algorithms. It has helped pave the way for more sophisticated probabilistic 
and deterministic tests and has contributed to our understanding of number theory and 
cryptography. The tester is described in more detail in [6]. 

Accuracy of the Solovay-Strassen test 
The accuracy per iteration is only half of the Miller-Rabin (see later). This means that if we 
required the same accuracy for both the Miller-Rabin test and the Solovay-Strassen test we need 
to perform twice as many iterations to keep the probability the same between the two test 
methods. For the Solovay-Strassen the probability, p for a correct answer is: 

(1/2)k = p =>          ( 2) 

k = log(1/p) / log(2)         ( 3) 

At first glance this seems not very accurate however in practical tests you usually get much 
higher accuracy. E.g. Scanning the first 10M positive integers reveal only approx. 385 false 
results. Yielding an error rate of 0.00057 instead of the probability of a correct answer to be 0.5 
this is 877 times less than the expected rate of 0.5. One extra iteration reduced the number of 
false results to 19 or an error rate of 2.8e-05 or ~ 8,900 less than the expected rate of 0.25. With 
5 iterations the error rate was down to approx. 0. 
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First 664,579 primes in the range of the first 10,000,00 integers 
Rounds/Iterations False Positive False Negative Error rate Probabilistic 

error rate 
1 385 0 5.79e-4 0.5 
2 19 0 2.86e-5 0.25 
3 7 0 1.05e-5 0.125 
4 1 0 1.50e-6 0.063 
5 0 0 0 0.031 
6 1 0 1.50e-6 0.016 
7 0 0 0 0.008 

As expected, the more rounds (iteration) the fewer false positives. Also, note that the accuracy 
result is many times better than the probabilistic error bound for Solovay-Strassen. 

64-bit source code for the Solovay-Strassen primality tester. The original was from the Solovay-
Strassen method of Primality Test - GeeksforGeeks, however, modified by using a more 
advanced random generator with a uniform distribution. 

// Perform the Solovay-Strassen Primality Test 
static bool SolovayStrassen(const uintmax_t p, const int iterations) 
{ 
 // Check for small primes 
 if (p <= 1) return false; 
 if (p == 2 || p == 3) return true; 
 // Eliminate any multiple of 2 or 3. 
 if (p % 2 == 0 || p % 3 == 0) return false;  
 
 // Instead of just using rand() this is a much stronger way to generate random  
  // numbers in the range 2,p-2, and up to 64bit environment 
 // Although it slower the performance quite significantly, it is more randomness 
 random_device rd; 
 mt19937_64 generator(rd()); 
 uniform_int_distribution<intmax_t> dis(2, p - 2); 
 
 for (int i = 0; i < iterations; i++) 
 { 
  // Generate a random number a 
  uintmax_t a = dis(generator);  
  uintmax_t jacobian = (p + jacobi(a, p)) % p; 
  uintmax_t mod = ipow_modulo(a, (p - 1) / 2, p); 
   
  if (!jacobian || mod != jacobian) 
   return false; 
 } 
 return true; 
} 
 

Arbitrary precision Solovay-Strassen 
We don’t have, at least not directly access to an arbitrary precision version of the above random 
generator, at least not of the same level as the build in the C++ language standard library. 
Instead, we use a workaround. We know that an arbitrary precision integer internally consists of 
several 64-bit unsigned vector elements. [1]. We can get access to how many 64-bit elements 
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comprise the arbitrary precision number by using the method .size(). We then randomly decide 
how many 64-bit elements our random number needs to have. A number between 1 and the 
size() of the arbitrary precision number. And then we build up the random number by calling the 
random generator several times to build up the entire random number for our arbitrary precision 
number. Other than that, it follows the 64-bit version. 

Source code for the arbitrary precision version of the Solovay-Strassen primality tester. 

// To perform the Solovay-Strassen Primality Test using arbitrary precision 
static bool SolovayStrassen(const int_precision& p, const int iterations) 
{ const int_precision c1(1), c2(2), c3(3); 
 int_precision aip; 
 uintmax_t a; 
 
 // Check for small primes 
 if (p <= c1) return false; 
 if (p == c2 || p == c3) return true; 
 // Eliminate any multiple of 2 or 3. 
 if ((p % c2).iszero() || (p % c3).iszero()) return false; 
 
 // Instead of just using rand() this is a much stronger way to generate random 
  // numbers in the range 2,p-2, and up to 64bit environment 
 // Although it slower the performance quite significantly, it is more randomness 
 random_device rd; 
 mt19937_64 generator(rd()); 
 a = p.index(p.size() - 1); 
 uniform_int_distribution<uintmax_t> disindex(1, p.size()); 
 uniform_int_distribution<uintmax_t> dishigh(2, a - 2); 
 uniform_int_distribution<uintmax_t> dis(2, (~0ull) - 2); 
 
 for (int i = 0; i < iterations; i++) 
 { 
  // Generate a random number aip 
  a = dishigh(generator); 
  uintmax_t inx = 0; 
 
  if (p.size() > 1)  // dont call disindex is p.size()==1 or max 64-bit data 
   inx = disindex(generator); 
 
  aip = a;  // Set most significant 
  for (; inx > 1; --inx) 
  { 
   aip <<= Bitsiptype; 
   aip += dis(generator); 
  } 
 
  int_precision jacobian = (p + jacobi(aip, p)) % p; 
  int_precision mod = ipow_modulo(aip, (p - c1) / c2, p); 
 
  if (jacobian.iszero() || mod != jacobian) 
   return false; 
 } 
 return true; 
} 
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Miller-Rabin  
The Miller-Rabin primality test is a popular method for determining whether a given number is 
prime or composite, using a probabilistic algorithm. It's known as a "probabilistic" test because 
instead of giving a definite answer, it provides a likely answer that's usually very accurate but not 
always guaranteed to be correct. 
To understand the test, it's important to know about Fermat's Little Theorem, which states that if 
p is a prime number and a is any integer not divisible by p, then ap-1 is congruent to 1 modulo p. 
In simpler terms, if we take any number a and raise it to the power p-1 (where p is a prime 
number), the result will always be 1 when divided by p. 

The Miller-Rabin test takes advantage of this fact by testing a given number n with a set of 
randomly generated values of a. If n is a prime number, then an-1 will always be congruent to 1 
modulo n, for any value of a that is not divisible by n. If n is composite, then there will be at least 
some values of a for which an-1 is not congruent to 1 modulo n. 

The algorithm first writes n-1 as 2s · r, where r is an odd number. This is possible because any 
even number can be factored into powers of 2, and any odd number can be expressed as 2k+1 for 
some integer k. Then, for each randomly generated value of a, the algorithm computes ar mod n. 
If this value is 1 or n-1, then n is likely to be prime. If not, the algorithm computes a(2^j · r) mod n 
for j from 1 to s-1. If any of these values are equal to n-1, then n is likely to be prime. If none of 
them are, then n is composite. 

The test is repeated for a certain number of randomly generated values of a. The more values of a 
that are tested, the higher the likelihood that the algorithm correctly identifies whether n is prime 
or not. However, it's important to note that there's always a small chance of the algorithm 
producing a false positive, which means identifying a composite number as prime. The chance 
can be reduced by increasing the number of tests performed. 

Overall, the Miller-Rabin primality test is a widely-used tool in cryptography and other fields 
where large prime numbers need to be generated or verified. 

The Invention of the Miller-Rabin Tester 
The Miller-Rabin primality test was developed by Michael O. Rabin and Gary L. Miller, with 
Miller publishing the algorithm in 1976 and Rabin improving it in 1980. Before the Miller-Rabin 
test, the Lucas-Lehmer test was commonly used for primality testing, but it was only effective 
for a specific type of prime numbers known as Mersenne primes. 

The Miller-Rabin primality test was a significant breakthrough in primality testing, as it provides 
a fast and accurate way to determine whether a given number is prime or composite. The 
algorithm uses probabilistic methods to quickly identify composite numbers, while still being 
highly accurate for identifying prime numbers. This has made the Miller-Rabin primality test 
widely used in various fields, such as cryptography, computer science, and number theory. 

Although Rabin and Miller were both credited with jointly inventing the Miller-Rabin primality 
test, their contributions to the development of the algorithm were different. Miller introduced a 
probabilistic primality test in 1976 that used a single random base to test whether a given number 
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is prime or composite. His algorithm was based on Fermat's Little Theorem, which states that if 
p is a prime number and a is any positive integer not divisible by p, then a(p-1) ≡ 1 (mod p). 
Miller's algorithm tested whether a given number n is prime by randomly selecting a base a and 
then checking if a(n-1) ≡ 1 (mod n). If this congruence was not satisfied, then n was composite. If 
it was satisfied, then n may be prime, but further tests were needed. 

In 1980, Rabin improved Miller's algorithm by introducing a variant that used multiple random 
bases to increase the accuracy of the test. Rabin's algorithm tested whether a given number n is 
prime by selecting k random bases a_1, a_2, ..., a_k, and then checking if each of the 
congruences a_i(n-1) ≡ 1 (mod n) was satisfied. If any of the congruences were not satisfied, then 
n was composite. If all of the congruences were satisfied, then n was considered a probable 
prime. Rabin showed that the probability of a false positive result could be made arbitrarily small 
by choosing a suitable value of k. 

In summary, the Miller-Rabin primality test is a significant development in the field of primality 
testing, with its impact felt in various fields today. Miller's contribution was the initial 
probabilistic primality test based on Fermat's Little Theorem, while Rabin's contribution was the 
improvement of the algorithm by using multiple random bases to increase the accuracy of the 
test. 

The accuracy of the Miller-Rabin primality test 
The accuracy of the Miller-Rabin primality test increases with the number of iterations or rounds 
of the test. In general, the more rounds of the test are performed, the lower the probability of a 
false positive result, i.e., the probability of identifying a composite number as prime. 

Specifically, for each iteration of the test, the probability of a false positive result is at most 1/4, 
meaning that the test is correct at least 75% of the time. So, for example, if we perform the test 
with 10 randomly chosen bases, the probability of a false positive result is at most (1/4)10 ~ 
9.5·10-7, which is less than one in a million. 

There is a formula that can be used to calculate the number of iterations of the test required to 
achieve the desired level of accuracy. Let p be the probability of a false positive result, and let k 
be the number of iterations of the test. Then, the probability of at least one false positive result 
after k iterations are at most (1/4)k, so we can set this equal to p and solve for k: 

(1/4)k = p =>           ( 4) 

 k = log(1/p) / log(4)         ( 5) 

For example, if we want the probability of a false positive result to be less than one in a billion 
(p=10-9), we can calculate that we need k = 15 iterations of the test. 

It's important to note that the Miller-Rabin primality test is a probabilistic algorithm, so it can 
still produce false positives (and false negatives) even with a large number of iterations. 
However, for practical purposes, the number of iterations can be chosen to provide a level of 
accuracy that is sufficient for the intended application. E.g. in cryptography, you will typically 
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use 64-128 iterations to get an acceptable result. The Miller-Rabin primality tester is described in 
more detail in [5]. 

First 664,579 primes in the range of the first 10,000,00 integers 
Rounds/Iterations False Positive False Negative Error rate Probabilistic 

error rate 
1 211 0 3.17e-4 0.25 
2 19 0 1.66e-5 0.063 
3 11 0 3.01e-6 0.016 
4 2 0 1.50e-6 0.063 
5 1 0 0 3.906e-3 

As expected, we see the same pattern as in the Solovay-Strassen method where the more rounds 
(iteration) the fewer false positives. Also, note that the accuracy result is many times better than 
the probabilistic error bound for Miller-Rabin. 

Source code for the Miller-Rabin primality test. We used the same way to generate more 
advanced random numbers to be used for the Miller-Rabin test as we did in the Solovay-Strassen 
test.  

// Miller-Rabin primality test  
// Works for up to 64bit integers 
//  
static bool MillerRabin(const intmax_t n, int k) 
{ 
 // Handle some base cases 
 if (n == 2 || n == 3) 
  return true; 
 if (n <= 1 || n % 2 == 0 || n % 3 == 0) // Eliminate factors of 2 and 3 
  return false; 
 
 // Find r and d such that n-1 = 2^r * d 
 int r; 
 intmax_t d = n - 1; 
 for (r = 0; d % 2 == 0; ++r) 
  d >>= 1; 
 
 // Perform k iterations of the Miller-Rabin test 
 random_device rd; 
 mt19937_64 gen(rd()); 
 uniform_int_distribution<intmax_t> dis(2, n - 2); 
 
 for (int i = 0; i < k; i++) 
 { 
  intmax_t a = dis(gen); 
  intmax_t x = ipow_modulo(a, d, n); 
  if (x == 1 || x == n - 1) 
   continue; 
 
  for (int j = 0; j < r - 1; j++) 
  { 
   x = ipow_modulo(x, 2, n); 
   if (x == n - 1) 
    break; 
  } 
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  if (x != n - 1) 
   return false; 
 } 
 return true; 
} 

 

Arbitrary precision Miller-Rabin 
We use the same trick as before for generating an arbitrary precision number. 

 
// Miller-Rabin primality test  
// Works for arbitrary precision integers 
//  
static bool MillerRabin(int_precision& n, const int k) 
{ 
 const int_precision c1(1), c2(2), c3(3); 
 int_precision aip; 
 uintmax_t a, r; 
 
 
 // Handle some base cases 
 if (n == c2 || n == c3)  
  return true; 
 if (n <= c1 || n.even()) 
  return false; 
  
 // Find r and d such that n-1 = 2^r * d 
 r = 0; 
 // find r, d so that d is odd and (2^r)d = n-1 
 int_precision d = n - c1; 
 r = d.ctz(); // Faster than the while loop. while (d.even()) {d >>= 1; r++;} 
 d >>= r; 
    
 // Perform k iterations of the Miller-Rabin test 
 random_device rd; 
 mt19937_64 generator(rd());  // Initialized random generator with random seed 
  
 a = n.index(n.size()-1); 
 uniform_int_distribution<uintmax_t> disindex(1,n.size()); 
 uniform_int_distribution<uintmax_t> dishigh(2, a-2); 
 uniform_int_distribution<uintmax_t> dis(2, (~0ull) - 2); 
 
 for (int i = 0; i < k; i++) 
 { 
  a = dishigh(generator); 
  uintmax_t inx=0; 
   
  if(n.size()>1)  // dont call disindex is n.size()==1 or max 64-bit data 
   inx = disindex(generator); 
   
  aip = a;  // Set most significant 
  for (; inx > 1; --inx) 
  { 
   aip <<= Bitsiptype; 
   aip += dis(generator); 
  } 
 
  int_precision x = ipow_modulo(aip, d, n); 
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  if (x == c1 || x == n - 1) 
   continue; 
   
  for (int j = 0; j < r - 1; j++) 
  { 
   x = ipow_modulo(x, c2, n); 
   if (x == n - 1)  
    break; 
  } 
  if (x != n - c1)  
   return false; 
 } 
 
 return true; 
} 

 

 

Baillie PSW 
The Baillie PSW primality test was created by Colin Baillie and Robert S. Wagoner in the early 
1980s. The test is named after the initials of their surnames and is also known as the Baillie-PSW 
test. It is a probabilistic primality test that combines the strengths of the Miller-Rabin test and the 
Lucas test. The Miller-Rabin test is a primality test based on Fermat's Little Theorem, while the 
Lucas test is a specialized primality test based on Lucas sequences, which arise in number 
theory. 

Baillie and Wagoner developed the Baillie PSW test as a way to create a more reliable and 
efficient primality test. The test is popular among mathematicians and computer scientists and is 
widely used in cryptographic applications. One of the important features of the Baillie PSW test 
is its use of strong pseudoprimes, a type of composite number that can be difficult to distinguish 
from prime numbers and passes certain primality tests. 

Baillie and Wagoner showed that the Baillie PSW test is reliable even for strong pseudoprimes, 
making it a useful tool for testing large numbers for primality. The Baillie PSW test has 
contributed to the development of other probabilistic and deterministic primality tests used in 
various applications. 

However, the author notes that some implementations of the Baillie PSW test may not be 
accurate and that some tests may not be true Baillie PSW tests. One implementation that the 
author cites claims to implement a strong Lucas test, which is a specialized primality test that is 
not the same as the Baillie PSW test. The author believes that this implementation works 
correctly without false positives or negatives for the first 264 -1 numbers. 

The Baillie PSW primality tester is described in more detail in [3]. And is considerably more 
complicated to implement than the two previous methods. 

.Algorithm 3. The Baillie PSW primality test 

1. Check n for some based prime numbers of 2 and 3 and any modulo hereof. 
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2. Perform some trial division for primes up to 101. This is done to ensure that in Step 4 we 
can make a reasonable choice of D. 

3. Perform a base 2 single round of the Miller-Rabin test. If n is not a strong probable prime 
then n must be composite and return false. 

4. Find the first D in the sequence 5, −7, 9, −11, 13, −15, … etc. for which the Jacobi 
symbol (D/n) is −1. Set P = 1 and Q = (1 − D) / 4. 

5. Perform a normal or strong Lucas probable prime test on n using parameters D, P, and Q. 
If n is not a strong Lucas probable prime, then n is composite. Otherwise, n is almost 
certainly prime. 

 

Accuracy of the Baillie PSW primality test. 
Testing the first 10M numbers for prime using the Baillie PSW test you get zero false positives 
and zero false negatives and that is without using the strong Lucas properly prime test. This 
makes the Baillie PSW a very accurate test. The author of the test claims that it works without 
errors for any number below 264-1. 

Now is there a way to estimate the probability of the test giving you the correct answer? To my 
knowledge, there does not exist a proper answer for this other than the error rate is very low. 
This can make the use of the Baillie PSW test in some situations difficult to use since you have 
no way of knowing how much you can trust the result. You don’t have that problem with the 
Solovay-Strassen or the Miller-Rabin test since there is a well-known formula for the probability 
of a correct answer. 

The source was derived from a Python version that used a mix of functions from other sources. 
The code has been converted and optimized for use in C++ and rewritten of code to reduce 
arithmetic overflow in a 64-bit environment. Furthermore, some of the sub-function has been 
implemented as C++ Lambda function. The only outside function is the Lucas strong probability 
test. 

// Function to compute the Baillie-PSW test 
bool BailliePSW(const uintmax_t n, const bool spp=false)  
{ 
 // Check for small primes 
 if (n <= 1) return false; 
 if (n == 2 || n == 3) return true; 
 if (n % 2 == 0 || n % 3 == 0) return false;// Eliminate any multiple of 2 or 3. 
 
 // need to test small primes as the D chooser might not find 
 // a suitable value for small primes 
 for (uintmax_t p: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 
     59, 61, 67, 71, 73, 79, 83, 89, 97, 101}) 
  if (n % p == 0)  
   return n == p; 
 
 // Check for perfect squares 
 uintmax_t sqrt_n = uintmax_t(sqrt(n)); 
 if (sqrt_n * sqrt_n == n)  
  return false; 
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 // This implementation uses a single base, 2, but is written in a way 
 // that allows additional bases to be added easily if required 
 // The last line, commented out, is an example of how the routine could be 
  // modified. 
 // if more bases are required. 
 // It is implemented as a Lambda function 
 auto miller_rabin = [](uintmax_t a, uintmax_t n) 
 { 
  // find s, d so that d is odd and (2^s)d = n-1 
  uintmax_t d = n - 1, s = 0; 
  while ((d & 1) == 0) { 
   d >>= 1; 
   s++; 
  } 
  // test whether 'n' is a strong probable prime to base 'a' 
  a = ipow_modulo(a, d, n); 
  if (a == 1) 
   return true; 
  for (int r = 0; r < s - 1; r++) 
  { 
   if (a == n - 1) 
    return true; 
   a = ipow_modulo(a, 2, n);   
  } 
  return (a == n - 1); 
 }; 
 
 // Do one Miller Rabin step with base ==2 
 if (miller_rabin(2,n) == false)  // if (miller_rabin(2, d, n, s) && 
miller_rabin(3, d, n, s) && miller_rabin(5, d, n, s)); 
  return false;   // Composite number 
 
 // Find Dj pair 
 pair<int, int> Dj; 
 //Dj = D_chooser(n);  // D_chooser do not need to check for is_square() 
 Dj.first = 5; 
 Dj.second = jacobi(Dj.first, n); 
 while (Dj.second > 0) 
 { 
  Dj.first += (Dj.first > 0 ? 2 : -2); 
  Dj.first *= -1; 
  Dj.second = jacobi(Dj.first, n); 
 } 
 if (Dj.second == 0) 
  return false; 
 
 // Check for normal or strong Lucas  
 return lucas_spp(n,Dj.first, 1, (1-Dj.first)/4, spp); 
} 

And the supporting lucas_spp() function. Notice the fifth parameter that indicates if we use a 
strong or extra strong Lucas test. 

// Lucas strong probable prime test 
static bool lucas_spp(uintmax_t n, intmax_t D, intmax_t P, intmax_t Q, bool spp) 
{  
 pair<intmax_t, intmax_t> UV; 
 
 if (n % 2 == 0) return false; 
 
 // Lambda function for (a*b)%n without overflow 
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 auto mod_mul = [](intmax_t a, intmax_t b, const intmax_t n) 
 { 
  intmax_t result = 0; 
  for (; b > 0; b >>= 1) 
  { 
   if (b & 1) 
    result = (result + a) % n; 
   a = (a * 2) % n; 
  } 
  return result; 
 }; 
 
 // Lamnda function to Compute U_k and V_k in the Lucas sequence 
 auto UVseq = [](const intmax_t k, const intmax_t n, const intmax_t P, const 
intmax_t D) { 
  intmax_t U = 1, V = P; 
  bitset<64> dig(k); 
  int i; 
 
  // Lambda function for dividing with 2 modulo n 
  // Assumes n is odd 
  auto div2modn = [](const intmax_t a, const intmax_t n) 
  { 
   intmax_t x = a; 
   if (x & 1) 
    x += n; 
   return (x >> 1) % n; 
  }; 
 
  // Lambda function for detection of multiplication overflow 
  auto overflow = [](const intmax_t a, const intmax_t b) 
  { 
   if (a != 0 && (b >= INT64_MAX / a || b < INT64_MIN / a)) 
    return true; 
   return false; 
  }; 
 
  // Lambda function for (a*b)%n without overflow 
  auto mod_mul = [](intmax_t a, intmax_t b, const intmax_t n) 
  { 
   intmax_t result = 0; 
   for (; b > 0; b >>= 1) 
   { 
    if (b & 1) 
     result = (result + a) % n; 
    a = (a * 2) % n; 
   } 
   return result; 
  }; 
   
  // Bypass all leading zeros 
  for (i = int(dig.size()) - 1; i >= 0 && 0 == dig[i]; --i) 
   ; 
  // Bypass the first one bit 
  --i; 
  // Take each of the remaining bits 
  for (; i >= 0; --i) 
  { 
   intmax_t tmp = U; 
 
   U = mod_mul(U, V, n);  // (U*V)%n 
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   if (overflow(V, V) || overflow(D * tmp, tmp)) // 64bit overflow? 
   { 
    intmax_t Vtmp = V, oldV = V, oldU = tmp, oldtmp = tmp; 
    Vtmp = mod_mul(Vtmp, Vtmp, n); 
    tmp = mod_mul(tmp, tmp, n); 
    tmp = mod_mul(D, tmp, n); 
    Vtmp += tmp; 
    V = div2modn(Vtmp, n); 
   } 
   else 
   { 
    V = div2modn(V * V + D * tmp * tmp, n); // V'2k=( 
(V'k)^2+D(U'k)^2)/2 
   } 
   while (V < 0) //ensures that V is positive modulo n.  
    V += n; // Emulates floored division 
   if (1 == dig[i]) 
   {// Notice P and D are usually small numbers so we don’t check for 
overflow here 
    tmp = U; 
    U = div2modn(P * U + V, n);  // U'k+1=(P(U'k)+(V'k))/2 
    V = div2modn(D * tmp + P * V, n); // V'k+1=(D(U'k)+P(V'k))/2 
    while (V < 0) 
     V += n;// Ensures that V is positive modulo n. 
Emulates floored division 
   } 
  } 
  pair<intmax_t, intmax_t> UV(U, V); 
  return UV; 
 }; 
 
 // Normal Lucas test 
 if (spp == false) 
 { // Regular Lucas 
  UV = UVseq(n + 1, n, P, D); 
  return (UV.first == 0); 
 } 
 
 uintmax_t d = n + 1, s; 
 for (s = 0; d % 2 == 0; ++s) 
  d >>= 1; 
  
 intmax_t U, V; 
  
 UV=UVseq(d, n, P, D);  
 U=UV.first; V = UV.second; 
 if (U == 0 || V == 0) 
  return true; 
 
 // Compute the strong Lucas 
 Q = ipow_modulo(Q, d, n); 
 while (Q < 0) 
  Q += n;  // Ensured correct flored division  
  
 // Lambda function for detection of multiplication overflow 
 /*auto overflow = [](const intmax_t a, const intmax_t b) 
 { 
  if (a != 0 && (b >= INT64_MAX / a || b < INT64_MIN / a)) 
   return true; 
  return false; 
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 }; 
 */ 
 
 for (; s>0; --s) 
 { 
  // V = V * V - 2 * Q; 
  int64_t v_mod_n = V % n, q_mod_n = Q % n, vv_mod_n = mod_mul(v_mod_n, 
v_mod_n, n); 
  int64_t two_q_mod_n = (2 * q_mod_n) % n; 
  V = (vv_mod_n - two_q_mod_n + n) % n; 
   
  if (V >= 0) 
   V %= n; 
  else 
  { // We need a flored division, not a truncated division as in C++ 
   while (V < 0) 
    V += n; 
   // V %= n; not needed 
  } 
  if (V == 0) 
   return true; 
  // Double the subscript. Q square is always positive so the c++ % operator  
   // is safe to use 
  Q = ipow_modulo(Q, 2, n); // (Q * Q) % n;    
 } 
 return false; 
} 

 

Arbitrary precision Baillie PSW 
As with the other primality tester, it is fairly easy to convert it into an arbitrary version.  

// Function to compute the Baillie-PSW primality test 
bool BailliePSW(const int_precision& n, const bool spp=false) 
{ 
 const int_precision c1(1), c2(2), c3(3); 
 
 // Check for small primes 
 if (n <= c1) return false; 
 if (n == c2 || n == c3) return true; 
 // Eliminate any multiple of 2 or 3. 
 if ((n % c2).iszero() || (n % c3).iszero()) return false;  
 
 // Need to test small primes as the D chooser might not find 
 // a suitable value for small primes 
 for (uintmax_t p: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 
          59, 61, 67, 71, 73, 79, 83, 89, 97, 101}) 
  if ((n % int_precision(p)).iszero()) 
   return n == int_precision(p); 
 
 // Check for perfect squares 
 auto is_square = [](const int_precision& n) 
 { 
  const int_precision c1(1); 
  if (n.sign() < 0) return false; 
  if (n.iszero()) return true; 
 
  int_precision x(1), y(n); 
  while (x + c1 < y) 
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  { 
   int_precision mid = (x + y) >> c1; 
   if (mid * mid < n) 
    x = mid; 
   else 
    y = mid; 
  } 
  return (n == x * x || n == (x + c1) * (x + c1)); 
 }; 
 
 // If perfect square then it is a composite number 
 if (is_square(n)) 
  return false; 
 
 // This implementation uses a single base, 2, but is written in a way 
 // that allows additional bases to be added easily if required 
 // The last line, commented out, is an example of how the routine could be 
  // modified. 
 // if more bases are required. 
 // It is implemented as a Lambda function 
 auto miller_rabin = [](const int_precision& a, const int_precision& n) 
 { 
  const int_precision c1(1), c2(2); 
  int_precision aip(a); 
  // find s, d so that d is odd and (2^s)d = n-1 
  int_precision d = n - c1; 
  intmax_t s; 
  s = d.ctz(); // Faster than the while loop. while (d.even()){d>>=1; r++;} 
  d >>= s; 
   
  // test whether 'n' is a strong probable prime to base 'a' 
  aip = ipow_modulo(aip, d, n); 
  if (aip == c1) 
   return true; 
  for (intmax_t r = 0; r < s - 1; r++) 
  { 
   if (aip == n - c1) 
    return true; 
   aip = ipow_modulo(aip, c2, n);   
  } 
  return (aip == n - c1); 
 }; 
 
 // Do one Miller Rabin step with base ==2 
 if (miller_rabin(c2, n) == false)  // if (miller_rabin(2, d, n, s) && 
miller_rabin(3, d, n, s) && miller_rabin(5, d, n, s)); 
  return false;   // Composite number 
 
 // Find Dj pair 
 pair<int, int> Dj; 
 //Dj = D_chooser(n); 
 Dj.first = 5; 
 Dj.second = int(jacobi(int_precision(Dj.first), n)); 
  
 while (Dj.second > 0) 
 { 
  Dj.first += (Dj.first > 0 ? 2 : -2); 
  Dj.first *= -1; 
  Dj.second = int(jacobi(int_precision(Dj.first), n)); 
 } 
 if (Dj.second == 0) 
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  return false; 
 
 // Check for normal or strong Lucas  
 return lucas_spp(n, Dj.first, 1, (1 - Dj.first) / 4, spp); 
} 

And the supporting lucas_spp() function for arbitrary precision. Notice the fifth parameter that 
indicates if we use a strong or extra strong Lucas test. 

// Lucas strong probable prime test for arbitrary precision 
static bool lucas_spp(const int_precision& n, const intmax_t D, const intmax_t P, const 
intmax_t QQ, bool spp) 
{ 
 const int_precision c1(1), c2(2); 
 pair<int_precision, int_precision> UV; 
 
 if (n.even()) return false; 
 
 // Lambda function to Compute U_k and V_k in the Lucas sequence 
 // This is the arbitrary precision version 
 auto UVseq=[](const int_precision & k, const int_precision & n, const intmax_t P, 
const intmax_t D) { 
  int_precision U = int_precision(1), V = P; 
  intmax_t i, j; 
 
  // Lambda function for dividing with 2 modulo n 
  // Assumes n is odd 
  auto div2modn = [](const int_precision& a, const int_precision& n) 
  { 
   int_precision x(a); 
   if (x.odd()) 
    x += n; 
   return (x >> 1) % n; 
  }; 
 
  // Take each of the bits in the int_precisioon number 
  for (j = k.size(); j > 0; --j) 
  { 
   bitset<64> dig(k.index(j - 1)); 
   if (j == k.size())  // First time 
   {// Bypass all leading zeros in the most significant vector 
    for (i = intmax_t(dig.size()) - 1; i >= 0 && 0 == dig[i]; --
i) 
     ; 
    // Bypass the first one bit in the most significant vector 
    --i; 
   } 
   else 
    i = 63; // Otherwise take all the bits from the subsequent 
vector 
   for (; i >= 0; --i) 
   { 
    int_precision tmp = U; 
 
    U = (U * V) % n; 
    V = div2modn(V * V + D * tmp * tmp, n); // V'2k=( 
(V'k)^2+D(U'k)^2)/2 
 
    while (V < 0) 
     V += n;// ensure that V is positive modulo n. Emulates 
floored division 
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    if (1 == dig[i]) 
    { // Notice P and D are usually small numbers so we 
don't check for overflow here 
     tmp = U; 
     U = div2modn(P * U + V, n); // U'k+1=(P(U'k)+(V'k))/2 
     V = div2modn(D * tmp + P * V, n);
 //V'k+1=(D(U'k)+P(V'k))/2 
     while (V < 0) 
      V += n;// Ensure that V is positive modulo n. 
Emulates floored division 
    } 
   } 
  } 
  pair<int_precision, int_precision> UV(U, V); 
  return UV; 
 }; 
 
 
 // Normal Lucas test 
 if (spp == false) 
 { 
  UV = UVseq(n + c1, n, P, D); 
  return (UV.first.iszero() ); 
 } 
 // Strong Lucas 
 int_precision d = n + c1; 
 uintmax_t s; 
 for (s = 0; d.even(); ++s) 
  d >>= c1; 
 
 int_precision U, V; 
 
 UV = UVseq(d, n, P, D);  
 U = UV.first; V = UV.second; 
 if (U.iszero() || V.iszero()) 
  return true; 
 
 // Compute the strong Lucas 
 int_precision Q(QQ); 
 Q = ipow_modulo(Q, d, n); 
 while (Q < 0) 
  Q += n;  // Ensured correct floored division  
 
 for (; s>0; --s) 
 { 
  V = V * V - c2 * Q; 
  if (V >= 0) 
   V %= n; 
  else 
  { //We need a flored division, not a truncated division as in C++ 
   while (V < 0) 
    V += n; 
   // V %= n; not needed 
  } 
  if (V.iszero()) 
   return true; 
  // Double the subscript. Q square is always positive so the c++ % operator 
is safe to use 
  Q = (Q * Q) % n;  
 } 
 return false; 
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} 

 

 

Performance of Primality Testers 
For prime numbers exceeding 264 Baillie PSW is a clear winner. Verifying primes for 20-300 
digits the Baillie PSW at least twice as fast as the Miller-Rabin test. For prime numbers less than 
264 they were both performance-wise in the same neighborhood whereas the Solovay-Strassen 
test was half the speed of the Miller-Rabin. 

 

Recommendation for primality Tester 
Since the performance of the Solovay-Strassen for the equivalent iterations reaching a certain 
probabilistic level lacks Miller-Rabin there is no need to consider that method over Miller-Rabin. 
If we compare the Miller-Rabin with the Baillie PSW our performance test show that the Baillie 
PSW is significantly faster than the Miller-Rabin test for prime number exceeding 20 decimal 
digits. The Baillie PSW should be the chosen one. However, it is very hard to bind the 
probabilistic level of the Baillie PSW test and although it is very accurate it is a probabilistic 
primality tester and if you need some assurance that the probabilistic result is below a certain 
threshold you would need to consider the Miller-Rabin tester. In [1] both methods have been 
implemented.  
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